O.P. Code: 1	9HS0801
---------------------	---------

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR

(AUTONOMOUS)

B. Tech I Year I Semester Supplementary Examinations August-2021

APPLIED CHEMISTRY

(Common to EEE, ECE)

Time: 3 hours

Max. Marks: 60

R19

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

1	a	Define Electrode Potential.	3 M
	b	Derive the Nernst equation for a single electrode potential and write its applications.	9M
		OR	
2	a	Define electrochemical sensor and their applications.	4 M
	b	Draw the neat sketch of electrochemical sensor and explain its construction,	8M
		working principle.	
		UNIT-II	
3	a	Derive Schrodinger wave equation?	8 M
	b	Explain the significance of the Ψ and Ψ_2 .	4 M
		OR	
4	a	Explain the energy level diagrams of CO and NO molecule.	7M
	b	Explain Heisenberg Uncertainty principle.	5M
		UNIT-III	
5	a	Distinguish between Thermoplastics and thermosetting plastics.	6M
	b	Describe the preparation, properties and uses of Bakelite.	6M
		OR	0111
6	a	Describe the preparation, properties and uses of Carbon Fibers	7 M
	b	Describe the preparation, properties and uses of Nylon-6, 6.	5M
		UNIT-IV	
7	a	Explain the working principle of Atomic Absorption Spectrometer (AAS).	6M
	b	Write a note on atomic absorption and molecular absorption.	6M
		OR	0101
8	a	Explain principle and instrumentation of UV-visible spectroscopy with neat diagram.	8M
	b	What are the applications of Gas Chromatography?	4M
		UNIT-V	
9	a	Write a short note on Complementarity.	6M
	b	What is meant by Nanomaterials? How is Nanomaterials Classified?	6M
		OR	0171
10	a	What is basic lock and key principle?	6M
	b	Write a note on Super Capacitors.	6M

*** END ***